142 research outputs found

    Coherent Communication of Classical Messages

    Full text link
    We define "coherent communication" in terms of a simple primitive, show it is equivalent to the ability to send a classical message with a unitary or isometric operation, and use it to relate other resources in quantum information theory. Using coherent communication, we are able to generalize super-dense coding to prepare arbitrary quantum states instead of only classical messages. We also derive single-letter formulae for the classical and quantum capacities of a bipartite unitary gate assisted by an arbitrary fixed amount of entanglement per use.Comment: 5 pages, revtex, v2: updated references, v3: changed title, fixed error in eq (10

    Approximate unitary tt-designs by short random quantum circuits using nearest-neighbor and long-range gates

    Full text link
    We prove that poly(t)n1/Dpoly(t) \cdot n^{1/D}-depth local random quantum circuits with two qudit nearest-neighbor gates on a DD-dimensional lattice with n qudits are approximate tt-designs in various measures. These include the "monomial" measure, meaning that the monomials of a random circuit from this family have expectation close to the value that would result from the Haar measure. Previously, the best bound was poly(t)npoly(t)\cdot n due to Brandao-Harrow-Horodecki (BHH) for D=1D=1. We also improve the "scrambling" and "decoupling" bounds for spatially local random circuits due to Brown and Fawzi. One consequence of our result is that assuming the polynomial hierarchy (PH) is infinite and that certain counting problems are #P\#P-hard on average, sampling within total variation distance from these circuits is hard for classical computers. Previously, exact sampling from the outputs of even constant-depth quantum circuits was known to be hard for classical computers under the assumption that PH is infinite. However, to show the hardness of approximate sampling using this strategy requires that the quantum circuits have a property called "anti-concentration", meaning roughly that the output has near-maximal entropy. Unitary 2-designs have the desired anti-concentration property. Thus our result improves the required depth for this level of anti-concentration from linear depth to a sub-linear value, depending on the geometry of the interactions. This is relevant to a recent proposal by the Google Quantum AI group to perform such a sampling task with 49 qubits on a two-dimensional lattice and confirms their conjecture that O(n)O(\sqrt n) depth suffices for anti-concentration. We also prove that anti-concentration is possible in depth O(log(n) loglog(n)) using a different model

    How many copies are needed for state discrimination?

    Full text link
    Given a collection of states (rho_1, ..., rho_N) with pairwise fidelities F(rho_i, rho_j) <= F < 1, we show the existence of a POVM that, given rho_i^{otimes n}, will identify i with probability >= 1-epsilon, as long as n>=2(log N/eps)/log (1/F). This improves on previous results which were either dimension-dependent or required that i be drawn from a known distribution.Comment: 1 page, submitted to QCMC'06, answer is O(log # of states

    Extremal eigenvalues of local Hamiltonians

    Get PDF
    We apply classical algorithms for approximately solving constraint satisfaction problems to find bounds on extremal eigenvalues of local Hamiltonians. We consider spin Hamiltonians for which we have an upper bound on the number of terms in which each spin participates, and find extensive bounds for the operator norm and ground-state energy of such Hamiltonians under this constraint. In each case the bound is achieved by a product state which can be found efficiently using a classical algorithm.Comment: 5 pages; v4: uses standard journal styl
    corecore